QUESITO 1

Lanciando una coppia di dai cinque volte, qual è la probabilità di ottenere un punteggio maggiore di sette almeno due volte?

SOLUZIONE

Il numero dei casi possibili è pari a $6 \times 6 = 36$, poiché ogni faccia del primo dado si può combinare con ognuna delle sei facce del secondo.

I risultati sono rappresentati nella tabella seguente, dove in ogni cella è stata calcolata la somma dei numeri della riga e della colonna corrispondenti

ESITI DADO 1											
ESITI I DADO 2		1	2	3	4	5	6				
	1	2	3	4	5	6	7				
	2	3	4	5	6	7	8				
	3	4	5	6	7	8	9				
	4	5	6	7	8	9	10				
	5	6	7	8	9	10	11				
	6	7	8	9	10	11	12				

Poiché i punteggi superiori a 7 sono in tutto 15, la probabilità dell'evento

 $A = \{ si \ ottiene \ un \ punteggio \ totale \ superiore \ a \ 7 \}$

$$P(A) = \frac{15}{36} = \frac{5}{12} \cong 42\%$$

Ripetendo l'esperimento cinque volte, l'evento A si può realizzare un numero k di volte pari a 0,1,2,3,4,5.

Chiamiamo X la variabile casuale che conteggia il numero k di successi in n prove, la distribuzione di probabilità della variabile X è una **Distribuzione binomiale** $P(k) = C_{n,k}(p)^k(q)^{n-k}$

dove p è la probabilità che si realizzi l'evento A e q è la probabilità che si verifichi l'evento contrario \bar{A} ,

essendo
$$P(\bar{A}) = 1 - P(A)$$

Nel nostro caso

$$P(k) = C_{5,k} \left(\frac{5}{12}\right)^k \left(\frac{7}{12}\right)^{5-k}$$

Il risultato si può trovare applicando la definizione di probabilità composta e di probabilità totale.

La probabilità che in una sequenza di 5 lanci si realizzi k volte l'evento A e 5-k volte l'evento \bar{A} è uguale a $p^k \cdot q^{5-k}$ (probabilità composta)

Soluzione di Adriana Lanza

Le possibili sequenze di questo tipo sono tante quanti sono i modi di scegliere k posti per l'evento A (e quindi 5-k posti per l'evento \bar{A}); corrispondono pertanto al le combinazioni di classe k di 5 oggetti (i 5 posti della sequenza) $C_{5,k}$

$$P(k) = C_{5,k}p^k \cdot q^{5-k}$$
 (probabilità totale)

Nella tabella seguente sono riportati i valori della distribuzione di probabilità della variabile aleatoria

X che conteggia il numero k di successi in 5 lanci .

L'evento {si realizza A "almeno" due volte} è l'unione degli eventi che corrispondono ai valori di $k \ge 2$

P(X=k)	$\left(\frac{7}{12}\right)^5$	$5\left(\frac{5}{12}\right)^1\left(\frac{7}{12}\right)^4$	$10\left(\frac{5}{12}\right)^2\left(\frac{7}{12}\right)^3$	$10\left(\frac{5}{12}\right)^3\left(\frac{7}{12}\right)^2$	$5\left(\frac{5}{12}\right)^4\left(\frac{7}{12}\right)^1$	$\left(\frac{7}{12}\right)^5$		
k	0 1		2	3	4	5		
	X < 2		$X \ge 2$					

I valori numerici corrispondenti , approssimati alla seconda cifra decimale, sono riportati nel grafico della Figura $\bf 1$

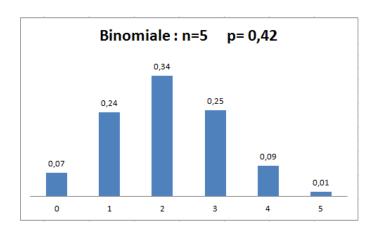


Figura 1

$$P(X \ge 2 \cong 0.34 + 0.25 + 0.09 + 0.01 = 1 - (0.07 + 0.24) = 0.69 = 69\%$$